Tuesday, June 4, 2019

Erosive Potential of Fruit Juices on Primary Teeth

Erosive Po ten dollar billtial of Fruit Juices on Primary TeethIn Vitro valuation of acrid potential of frozen and liquify yield succuss on primary dentitionABSTRACT breadal wearing away has gained importance now as a steadily growing public wellness problem world wide. Fruit juices are an important etiological factor, especi wholey character in frozen forms, desire harvest-home lollies and stick. Since this sustenanceary habit is much prevalent among children, primary teeth were selected for this study.AIMS To evaluate pH and titratable acidity of four most output juices in frozen and unfrozen forms. Calcium dissolution and embodiment of etching of ornament by these juices in frozen and unfrozen forms were also set(p).DESIGN pH of four different juices apple, orange, musumbi and grapes were determined using a digital pH mebibyte. The titratable acidity of these in frozen and unfrozen forms were determined by adding 0.5 ml of 1N NaOH to these, till a pH= 5 and pH = septenary were r all(prenominal)ed. Forty eight caries free deciduous anterior teeth specimens were watchful to study the etching public figure by see electron microscope SEM and atomic number 20 dissolution by atomic absorption spectrophotometer.STATISTICAL ANALYSIS One-Way Repeated Measures ANOVA and pair wise multiple comparison with Bonferroni correction. RESULTS affix in titratable acidity, irregular pattern of etching and atomic number 20 dissolution were found to be significantly more in the initial thawed frozen production juices. Grape juice record the lowest pH and more titratable acidity when analysed to other juices. CONCLUSION This study highlights the detrimental effect on teeth by the frequent consumption of payoff juices and their frozen products. The study concluded that suctioning on the frozen fruit juice products were more harmful than consuming in unfrozen state because more of erosion occurs in frozen state. Key words Frozen fruit juices, pH, tit ratable acidity, erosion, etching, SEM. Introduction HEALTHY LIVING the key to excerption has been emphasized by health professionals upon the old and modern alike. The DIETARY FACTOR is gaining much accolade and health drinks in the form of fruit juices have gained nasty popularity in this category. Parents regard these as being healthy and nutritious and a good source of Vitamin C.1. Experiments conducted on the animals to evaluate the erosive potential of fruit juices showed that these juices were ten whiles more destructive to the teeth than the whole fruit.2 Most fruit juices have a low pH and acids which can decalcify the teeth.3 Hence, the frequent consumption of these fruit drinks is directly related to dental morbidity, especially erosion.4Dental erosion has been defined as superficial loss of dental hard tissue by a chemical process not involving bacteria.5 The aetiopathogenesis can be varied (intrinsic and extrinsic factors),most important are dietetical acids.6 A m odern habit among consumers is to freeze and suck out fruit lolly and candies.Sucking on frozen fruit juices has a great risk for erosion due to slow consumption and longer time required to neutralize it7.Sucking of the melting juices from the frozen product is a pleasurable experience along with increase in the initial acidity and buffering faculty.8Hence the frequent use of these could produce damaging effects on the teeth. Primary teeth were included in this study,because children are frequently involved in the consumption of frozen fruit juices and deciduous teeth are more susceptible to erosion than permanent teeth due to less mineralisation and immature enamel progress9 The study was performed to evaluate the pH of four fruit juices in a frozen and unfrozen form. The titratable acidity of these fruit juices to be checked. The total amount of calcium dissolved in fruit juices from the teeth and to study the pattern of print enamel on teeth.MATERIALS AND METHODSPreparation o f juices Two and half litres of four different fresh fruit juices namely apple, orange, grape and musumbi each were prepared with no added sugars or preservatives. These were allowed to equilib consecrate to direction temperature.Specimen preparation Fourty eight freshly extracted caries free deciduous anterior teeth were collected and were used in the study. Extracted teeth were completely coated with nail polish with the exception of a window on the enamel of the labial surface of approximately 2mm X 2mm in diameter.Method Two and half litres of apple juice were shaken for 15sec and this was divided into four samples of 600ml each. First sample (600ml) of this was taken and calcium absorption was assessed. From this, nose candy ml was separated, pH and titratable acidity were determined.Then another 100 ml was taken and a prepared tooth specimen was dipped in it for deuce hrs.(For assessment of calcium etching pattern at room temp).Remaining 400ml was taken in a bottle, sealed and placed in a recorded (-200c) deep freezer for 24 hrs. The bottle was taken and allowed to defrost. From this, initial 100ml was taken, pH and titratable acidity were determined. Then another 100 ml was taken and a prepared tooth was dipped in it for two hrs( For assessment of calcium etching pattern immediately after defrosting). Remaining 200 ml was defrosted for two hours. Then 100 ml of this was taken and pH and titratable acidity were determined. Another 100 ml was taken and a prepared tooth was dipped in it for two hrs (For assessment of calcium etching pattern two hrs after defrosting). This was repeated for remaining three samples (600ml each) of apple juice. The same procedure was done for the other three juices musumbi, orange and grape juice and the values recorded Table1,2,3Determination of pH and titratable acidity pH was determined by using a pH meter (digital pH meter model EQ-612).After determining the pH, the juice was titrated against 1N( Na OH )Sodium hydrox ide by adding 0.5ml of the same to the juice, mixed well and this were repeated until pH=five and pH=seven were reached to determine their titratable acidity.Assessment of calcium satiate The teeth were carefully lifted out of the juices and the juices were centrifuged at 3500 rpm for five min. With the help of micropipette superfit 200l of each of these samples of fruit juices were pipetted into the polypropylene subways. Then 40l distilled water were rinsed into the polypropylene tubes with the fruit juices. Then concentrated nitric acid (120l) were added, the lid of the polypropylene tube sealed and the sates of the tube were wet washed, by leaving it at 600c for 12hrs. After cooling, 50l of one mol/L KCl solution (an ionization suppressant) and 680l of distilled water were added. Then samples were shaken and the calcium concentrations were determined by the use of a flame (nitrous oxide/acetylene) atomic absorption spectrophotometer. To obtain calcium content of the fruit ju ices (without teeth), 200 l of the fruit juices were wet ashed and atomized exactly as mentioned above.Determination of etching pattern The teeth specimens were prepared for SEM observation by vaporisation followed by sputter coating of 20 nm of gold (JEOL,JFC 1100 E-JAPAN) and examined under a scanning electron microscope (JEOL,JSM-840A-JAPAN).Instant photomicrographs were made at X850,X1000 magnifications. Subsequently the X1000 magnification pictures were selected to compare the pattern of etched enamel surfaces.Statistical analysis The data obtained were subjected to statistical analysis by using One-Way Repeated Measures ANOVA and Pair wise multiple comparison with Bonferroni correctionRESULTS RECORDED pH VALUES OF FOUR proceeds JUICES (Table 1)Based on the results obtained in Table 1, the pH values of all the juices were less than 5.5, which is the critical pH, below which enamel dissolves. Grape juice recorded the lowest pH of 2.2 among the juices.TITRATABLE ACIDITY VALUES OF FOUR FRUIT JUICES (Table 2)For all the four fruit juices tested, the volume of 0.5 ml 1N NaOH needed to reach pH=five and pH= seven were more for immediate defrosted( initial thawed )juices than the juices at room temperature and that defrosted for two hrs. Hence, the immediate defrosted juices had more titratable acidity compared to the juices tested at other temperatures. Among the juices, grape juice had more titratable acidity.CALCIUM CONCENTRATION IN FOUR SAMPLES OF FRUIT JUICES MEASURED BY ATOMIC ABSORPTION SPECTROPHOTOMETER ( Table 3)The amount of calcium dissolution in the juices from the teeth were found to be significantly more in the immediate defrosted juices than the room temperature juices and that defrosted for two hours.Evaluation of SEM Images Representative SEM photomicrographs at magnification X1000.For teeth immersed in juices at room temperature, relatively smooth and slightly etched enamel surfaces were seen.Figures 1- 4Teeth dipped in juices immediately af ter defrosting, showed maximal erosion. Among these, apple showed eroded surface with enhanced porosityfigure5,a honeycomb enamel prism pattern noted in musumbi similar to that seen in acid etched enamelfigure 6.Teeth in orange and grapes showed more erosion resembling type II acid etching pattern figures 7,8.In case of teeth kept in juices two hrs after defrosting, the changes were similar to those seen at room temperature figures 9-12.DISCUSSIONThe awareness of the population about health has lead to an increased consumption of natural food products, especially fruits and fruit juices. But fruit juices contain substantial acids(eg citric acid in citrus tree fruits, malic acid in apples, tartaric acid in grapes)10which have the potential to cause loss of tooth tissue.1112 Various extrinsic and intrinsic factors contribute to dental erosion like diet, medicaments, occupation, sports, GERD, peptic ulcer, uremia etc.1314But most significant among these are dietary acids .3415Dental e rosion due to dietary acids are influenced by a florilegium of factors like pH, titratable acidity, temperature, concentration, frequency, and exposure time16.Many host factors also modify erosion, most important is saliva17.Reduced salivary flow rate leads to inadequate oral clearance of dietary acids. inhalation of juices at night increases the erosive potential as salivary flow rate is diminished during this period. 18.Also different studies on salivary flow rate indicated that young children have lower flow rate, resulting in defective oral clearance. 19.Intake of dietary acids decreases pH of the oral environment. Gregory-Head B et al20 suggested that the pH of the oral cavity bear on the solubility of the dental tissues. The critical pH at which the chemical dissolution of enamel occurs is accepted to be 5.50.3.421In this study, all the four fruit juices namely in the order of grape, orange, musumbi and apple showed a pH below five, thus enhancing the enamel dissolution cap acity.22Titratable acidity which denotes the hydrogen ion availability has been acknowledged as a adjust indicator of erosive potential rather than pH value totally23.Studies conducted by Touyz etal8 have shown that fruit juices have a high intrinsic buffering capacity.Modifying the form in which the fruit drinks are taken (sweets or frozen lollies) is expected to increase erosion2425. Sucking frozen fruit juices could be more erosive than unfrozen fruit juices because of increase in buffering capacity of initial thawed juice826..The acidity increases on freezing, as the physical state of the residual juice changes. When juice is frozen, water alone is solidified to ice without the solute. The solutes accumulates undiluted (concentrated). When juice is defrosted, the initial(concentrated) melt is more acidic with increased buffering capacity Thus sucking on these could cause a greater fall in oral pH and requires more buffering action to normalize the oral environment pH .As the r emaining ice melts and dilutes the solution back to pre-freezed state, the buffering capacity diminishes.8The calcium dissolution potential of these fruit juices was analyzed. It was found to be more in the initial thawed fruit juices than juices tested at other temperatures. This is in accordance with the findings of M.Silove 826 who suggested that sucking frozen fruit juices can lead to more calcium dissolution than unfrozen juices. Also in our study, lowest calcium concentration was found in grape juice which is in accordance with studies stating that the erosive potential of drinks are associated with low calcium concentration27SEM was done to qualitatively estimate enamel surface alterations. Irregular and pitted enamel surface were observed in teeth exposed to frozen juices than at room temperature and after two hours of defrosting. polar etching patterns as described earlier were observed. 28-30Similar studies were done on commercially available fruit juices and they are fou nd to be 6-8 times more erosive than homemade juices. 31-33The significance of this study was that, it was done in pure fruit juices, in frozen and unfrozen forms and multiple parameters were analyzed. The results showed that even pure fruit juices had erosive potential, especially in frozen forms.This study was done in vitro conditions, the results cannot be completely extrapolated to in vivo process, as interplay of various oral factors like salivary buffering capacity and flow rate to counteract erosion were not included in the study. 17Recommendations Although fruit juices are good for health, the frequency, method of drinking and the form in which they are consumed are important factors in dental erosion. Since children are frequently involved in the sucking of frozen fruit juice products, pediatric dentists should potently discourage them from practicing this form of habit. Advise them to avoid fruit juices at bedtime and always rinse mouth with water after consumption of jui ces. Another point to ensure is the use of additives which alter the pH and titratable acidity, thereby reducing the erosive potential of fruit juices. This requires further study.References1. Touyz L.Z.G . The Vitamin C contents of foods. J DASA 198237444-482. Miller C.D.Enamel erosive properties of fruits and fruit juices.J Nutr 19504163-67.3. Touyz L.Z.G,Glassman R.M. Citrus acids and teeth. J DASA 198136195-2014. Eccles J.D,Jenkins W.G. Dental erosion and diet. J Dent 19742153-1595. R.Rajendran, author. Shafers textbook of Oral Pathology,5th Edition. Elsevier India6. Lussi A,Jaeggi T,Zero D.The role of diet in the etiology of dental erosion.Caries Res 200438 suppl 134-44.7. Kevin H-K Yip,Roger J Smales,John A Kaidonis.The diagnosis and control of extrinsic acid erosion of tooth substance.General dentistry 2003350-353.8. Touyz L.Z, Silove M. increase acidity in frozen fruit juices and dental implications.ASDC J Dent child 199360223-225.9. Johansson AK,Sorvari R,Birkhed D,Meurman JH.Dental erosion in deciduous teeth-an in vivo and in vitro study.J Dent 200129333-40.10. Eccles J.D. Erosion affecting the palatal surfaces of upper anterior teeth in young people.Br Dent J.1982152375-37811. Touyz L.Z.G. Apples, acids and teeth. S.A.J Sci 198076200-201.12. Grobler S.R,Aalbers J and Vander Horst G. The pH, calcium, potassium and phosphorus content in South African fruit juices. J. Dieteics Home Econ 19831195-9813.Jarvinen VK,Rytomaa II,Heinonen OP.Risk factors in dental erosion.J Dent Res 199170942-94714.Zero DT.Etiology of dental erosion-Extrinsic factors.Eur J Oral Sc 1996104162-17715. Asher C,Read MJF. Early enamel erosion in children associated with the excessive consumption of citric acid. Br Dent J 1987162384-38716. WestNX, Hughes JA, Addy M.Erosion of dentine and enamel in vitro by dietary acidsthe effect of temperature,acid character,concentration and exposure time.J Oral Rehabil 200027875-880.17. Piangprach T,Hengtrakool C,Kukiattrakoon B,Kedjarune-Leggat U.The effect of salivary factors on dental erosion in various age groups and tooth surfaces.J Am Dent Assoc 2009 family unit140(9)1137-43.18.Millward A,Shaw L,Smith AJ,Rippin JW,Harrington E.The distribution and severity of tooth wear and relationship between erosion and dietary constituents in a group of children.Int J Pediatr Dent 19944152-15719.Crossner CG.Salivary flow rate in children and adolescents.Swed Dent J 19848271-620. Gregory Head B, Curtis D. Erosion caused by gastro esophageal reflux diagnostic considerations. J Prosthodont 19976278-28521.Jenkins,G.N.The physiology and biochemistry of the mouth.4th edition.Oxford, Blackwell,1978, pp 360-413.22. Jenkins G.N. The influence of environmental fluids on enamel solubility.J Dent Res 196645662-669.23. Owens BM.The potential effects of pH and buffering capacity on dental erosion.Gen Dent 2007 Nov-Dec 55(6)527-31.24. M.J Larsen B.Nyvad. Enamel erosion by some soft drinks and orange juices relative to their pH buffering effect and contents of calcium phosphate. Caries Res 199933(Supplement 1)81-8725. Holloway P.J , Mellanby M. and Stewart R.J.Fruit drinks and tooth erosion.Br Dent.J 1958104305-926. Louis LZ,G Touyz.The acidity and buffering capacity of Canadian fruit juices and dental implications. scientific Journal 199460454-4827. West NX,Hughes JA, ParkerDM, Newcombe RG,Addy M.Development and evaluation of a low erosive black currant juice drink.2.Comparison with a conventional black currant juice drink and orange juice.J Dent1999 27341-34428. Imfeld TDental erosion.Definition,Classification and links.Eur J Oral Sci 1996104 151-15529.Mannerberg F.Changes in the enamel surface in case of erosion.A replica study.Arch Oral Biol 1961459-6230.Silverstone,Saxton,Dogon. Variations in the pattern of acid etching of human enamel examined by SEM. Caries Res 19759373.31. Albert Schuurs.Pathology of the hard dental tissues.Ist edition.Wiley-Blackwell2013. pp158-15932. Shaw L,Smith A.Erosion in childrenAn increasin g clinical problem?Dent Update 199421103-106.33. Tahmassebi JF, Duggal MS, Malik-Kotru G,Curzon MEJ.Soft drinks and dental healtha review of the current literature.J Dent 2006342-11

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.